Least-Squares Method for the Oseen Equation
نویسندگان
چکیده
This article studies the least-squares finite element method for the linearized, stationary Navier–Stokes equation based on the stress-velocity-pressure formulation in d dimensions (d = 2 or 3). The least-squares functional is simply defined as the sum of the squares of the L2 norm of the residuals. It is shown that the homogeneous least-squares functional is elliptic and continuous in the H(div; ) ×H 1( ) × L2( ) norm. This immediately implies that the a priori error estimate of the conforming least-squares finite element approximation is optimal in the energy norm. The L2 norm error estimate for the velocity is also established through a refined duality argument. Moreover, when the right-hand side f belongs only to L2( ) , we derive an a priori error bound in a weaker norm, that is, the L2( )d×d × H 1( ) × L2( ) norm. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 32: 1289–1303, 2016
منابع مشابه
Global least squares solution of matrix equation $sum_{j=1}^s A_jX_jB_j = E$
In this paper, an iterative method is proposed for solving matrix equation $sum_{j=1}^s A_jX_jB_j = E$. This method is based on the global least squares (GL-LSQR) method for solving the linear system of equations with the multiple right hand sides. For applying the GL-LSQR algorithm to solve the above matrix equation, a new linear operator, its adjoint and a new inner product are dened. It is p...
متن کاملLeast squares weighted residual method for finding the elastic stress fields in rectangular plates under uniaxial parabolically distributed edge loads
In this work, the least squares weighted residual method is used to solve the two-dimensional (2D) elasticity problem of a rectangular plate of in-plane dimensions 2a 2b subjected to parabolic edge tensile loads applied at the two edges x = a. The problem is expressed using Beltrami–Michell stress formulation. Airy’s stress function method is applied to the stress compatibility equation, and th...
متن کاملThe Effect of Stabilization in Finite Element Methods for the Optimal Boundary Control of the Oseen Equations
We study the effect of the Galerkin/Least-Squares (GLS) stabilization on the finite element discretization of optimal control problems governed by the linear Oseen equations. Control is applied in the form of suction or blowing on part of the boundary. Two ways of including the GLS stabilization into the discretization of the optimal control problem are discussed. In one case the optimal contro...
متن کاملNumerical solution of the spread of infectious diseases mathematical model based on shifted Bernstein polynomials
The Volterra delay integral equations have numerous applications in various branches of science, including biology, ecology, physics and modeling of engineering and natural sciences. In many cases, it is difficult to obtain analytical solutions of these equations. So, numerical methods as an efficient approximation method for solving Volterra delay integral equations are of interest to many res...
متن کاملAnalysis of the [l, L, L] Least-squares Finite Element Method for Incompressible Oseen-type Problems
In this paper we analyze several first-order systems of Oseen-type equations that are obtained from the time-dependent incompressible NavierStokes equations after introducing the additional vorticity and possibly total pressure variables, time-discretizing the time derivative and linearizing the nonlinear terms. We apply the [L, L, L] least-squares finite element scheme to approximate the solut...
متن کامل